Modeling for Prediction of Characteristic Deflection of Flexible Pavements- Comparison of Models based on Artificial Neural Network and Multivariate Regression Analysis
نویسنده
چکیده
Pavement surface deflection of a highway is a primary factor for evaluating the pavement strength of a flexible pavement. Benkelman Beam Deflection (BBD) technique is widely used in the country for evaluating the structural capacity of an existing flexible pavement as also for estimation and design of overlays for strengthening of a weak pavement. The field test for measuring the surface deflection is expensive and time consuming, and alternate modeling methods to estimate surface deflection of a pavement, therefore, would result in substantial savings in time and money in the preparation of detailed project reports for the large highway rehabilitation and strengthening projects being undertaken in the country. An attempt has been made in this paper to compare the results obtained from the models based on Multivariate Regression analysis and Artificial Neural Network to predict reasonably accurate characteristic deflection of flexible pavements. Data used for building the model was collected from field tests conducted by various entities in the state of Madhya Pradesh engaged in the rehabilitation and strengthening of highways in the State passing through extensive black cotton soil areas.
منابع مشابه
Comparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...
متن کاملComparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses
Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملApplication of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle
In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...
متن کامل